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ABSTRACT

A noise-generating algorithm and associated computer program

for well-defined testing of beamformers are described. The algorithm is

especially suitable for superdirective arrays of underwater hydrophones

as it generates Gaussian noise of specified coherency. Statistical

properties of the generator are confirmed to be those planned, and the

ability of the generator to synthesize noise for isotropic or surface

noise sources is verified for three-element arrays. Cumulative

distributions for estimated coherency were obtained for the model.

0

- ' L C

-~---

I J ....



INTRODUCTION

Computer programs for theoretical testing and comparison of

beamforming algorithms require noise generating algorithms that

synthesize noise of known coherency and statistical properties.

There is a significant advantage in using noise synthesizers

to select suitable beamformers economically before field testing. The

*type of noise generated can be controlled and the beamformers tested for

a set of defined and reproducible noise conditions. A considerable time-

saving results since the testing of the beamformers for noise conditions

that might be met in the field over several years can be done in the

laboratory in a matter of days.

For arrays of widely spaced sensors, where the noise is

uncorrelated from sensor to sensor, noise generators simply consist of

uncorrelated noise sources, one noise source for each sensor. However,

for arrays of closely spaced sensors, a model to generate noise

correlated from sensor to sensor is required. This memorandum describes

the simulator, verifies its statistical properties, and delineates those

noise fLelds that can be represented by the simulator.

THEORY

A beamformer that explicitly includes a device to calculate

Fourier transforms of the hydrophone outputs is shown in Figure 1. For

computational efficiency, the noise generator described here produces the

Fourier transforms of the noise directly, instead of generating the time

series itf the noise and subsequently calculating the transform. These

transforms are arranged to be random variables with a Gaussian

distribution that has been found to be characteristic of ambient noise

over intervals of a few minutes
1 .
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To generate noise of specified coherencies between the n

sensors, the Fourier transform Xi(w), of the ith sensor at the frequency

w, is written as a linear combination of real and imaginary pairs of

Gaussian distributed random variables Zi(w). Both the real and imaginary

parts have a mean of 0 and a variance of 0.5. Dropping reference to

frequency, these linear combinations are written:

XI - all Z1 + a 12 Z2 + ..... + aln Zn

X2 = a21 Zl + a2 2 Z2 + . . . . . + a2n Zn

(1)

X= = ail Z1 + ai2 Z2 +. ..... . + ain Zn

F [X2(t)] Xi2(WJ) I k (W1)

X77(Wj)

SENSORS FOURIER WEIGHTS SUMMER
TRANSFORMS

Figure 1. In the generalized beamformer shown the time series xi(t) is
Fourier transformed to Xi( W j) and the transforms are
multiplied by the weights ki(wJ)"
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The values of the ai which are restrirted to be real, are

determined by the requirements that on the average the noise field power,

qij I-J, be homogeneous (the same at all hydrophones and equal to unity)

and that the average noise field coherency, qij i#j, between sensor pairs

be as specified by the user (e.g. isotropic noise). These two conditions

may be written

1iJ W XiXJ* i,J-1,2,...n. (2)

In addition, the simplifying assumption was made that

aij - 0 j>i. (3)

By rombining (1), (2), and (3) and using the independence of

the Zi it can be shown that

i

qij= i j,..i; i+,...n. (4)
k.I

These equations are solved for aij and the Fourier transforms

xi are then calculated from Equation (1). A listing of the noise

generating program is contained in Appendix A. The subroutine Gauss 4

called by the noise generator has been extensively tested and found to be

faster computationally and better statistically than the random number

generator 'Gauss' supplied with IBM systems software2 .

The noise generating algorithm cannot solve for aij for all

arbitrary sets of coherency values. Firstly, the form of Equation (3)

restricts noise fields modelled to those for which qij-qji. By doubling

the number of random variables Zi, complex qij could be accommodated.

Secondly, even for a three-element array the requirement that a3 3 be real

restricts permissible qij" To obtain some indication of whether this is
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a severe limitation, examples of noise fields that give real a 3 3 for a

three-element 'equispaced' horizontal line array were determined

numerically and theoretically.

The condition on qij that must be satisfied for real a33 for

any three-element array is,

q23 q23 + 2q13 q23 q12 + q2 - 1 < 0 (5)

This condition is a special case of the more general requirement that the

cross spectral matrix be Hermitian positive semidefinite 3 . Equation (5),

which is derived in Appendix B, was tested for isotropic noise, i.e.

noise whose coherency is given by

sin(kdij)qij =  -- (6)

and for surface-generated noise for whict, the coherency can be expressed

as

2mm! Jm(kd)qij (ki=  
(7)

(kd ii)m'

where k is the wave number, dij is the sensor separation, and Jm is the

Bessel function of the first kind of order m. The condition specified by

Equation (5) is satisfied for three-element equispaced arrays ford
isotropic noise and for surface generated noise for m = 0, 1, 2 and up

to 0.95. This was shown theoretically for surface noise as outlined in

Appendix C and numerically for isotropic noise. Beyond 0.95 of a

wavelength the model approaches that of independent noise sources, one

noise source for each hydrophone.

It might be thought that allowing aij to be complex would

remove the restriction imposed by Equation (5) and allow modelling of a

wider range of noise fields. However, even for complex a i j the
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restriction on the noise coherency as defined by Equation (5) remains.

Furthermore, allowing aij to be complex introduces a new difficulty.

While for real aij all sensors will have a uniform distribution of the

phase shift between the real and imaginary parts of the Fourier

transform, complex ajj introduces the situation where there are

distinctly different distributions for different hydrophones; this is

equivalent to saying that the noise field is not homogeneous in the phase

shift distribution and is therefore rather unrealistic. The restriction

to real aij is thus not purely arbitrary.

D: 2USSION OF RESULTS

Tests were carried out to determine whether the synthesizer

produced noise with the desired statistical properties. Firstly, the

Kolmogorov-Smirnov test was applied to test the hypothesis that the

Fourier transform amplitudes are Gaussian distributed random variables.

The test was applied to the cumulative distribution. Each cumulative

distribution tested contained 500 samples of the transform and 100

cumulative distributions were tested. A significance level was

calculated for each of the 100 cumulative distributions. The

significance level indicates the probability that the cumulative

distribution would have occurred by chance. Individual significance

levels were consistent with the hypothesis that the sample came from a

population of Gaussian distributions.

The 100 significance levels from the Kolmogorov-Smirnov test

were also examined. They lie between 0 and 100% and should have an equal

probability of occurrence, i.e. the significance levels should be

uniformly distributed. The observed set of 100 significance levels

obtained in the Kolmogorov-Smirnov test departed somewhat from a uniform

distribution. It was necessary to know whether this departure from a

uniform distribution was likely to occur by chance. Again the

Kolmogorov-Smirnov test was used to investigate the hypothesis that the



-6-

significance levels were uniformly distributed. This hypothesis of

uniform distribution could not be rejected at the 27% level, i.e. there

is approximately one chance in four of obtaining this particular

distribution or one with a greater deviation from uniformity. Thus there

is no reason to suspect the original hypothesis of the Fourier transform

amplitudes being Gaussian distributed. Indeed confidence in the

hypothesis is increased.

Secondly, the power from each sensor was tested to determine

whether the power was chi-squared distributed with two degrees of

freedom. Significance levels were calculated from the Kolmogorov-Smirnov

test for cumulative distributions containing 100 samples of the power in

20 trials with 5 sensors. The calculated individual significance levels

were consistent with the chi-squared hypothesis. Again to aid in the

evaluation of the significance levels as a group, the hypothesis that the

significance levels were uniformly distributed, as they should be, was

tested with the Kolmogorov-Smirnov test. It was found that the

hypothesis could not be rejected at the 77% level. These results are

taken as confirmation that the power is indeed chi-squared distributed

with two degrees of freedom as was intended.

Thirdly, the phase angle of the sensor outputs should be

uniformly distributed. In the 20 trials with 5 sensors, significance

levels were calculated using the Kolmogorov-Smirnov test for cumulative

distributions containing 100 samples of the phase angle. Again the

individual significance levels were consistent with the hypothesis under

test. Since the significance levels should themselves be uniformly

distributed, they were tested for a uniform distribution with the

Kolmogorov-Smirnov test. The hypothesis of a uniform distribution of the

significance levels could not be rejected ac the 97% level so that the

hypothesis that the phase of the sensor output is uniformly distributed

gains further support.
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Additional checks were made to verify that the algorithm

produced noise whose coherencies converged to the specified coherence for

the noise field. Hydrophone outputs were synthesized for isotropic noise

and also for a surface noise field represented by Jo(kd) as given by

Equation (7) for m=0. This was carried out for up to five hydrophones

for various sensor configurations and in all cases solutions were found

for the aij. The calculated coherencies for estimates made from samples

of 100 coherencies produced by the simulator showed a bias. That bias

agreed well with the bias given by Benignus5 for coherencies generated

from two independent Gaussian noise sources.

Cumulative distributions for the coherencies were calculated

for a sample size of 100 at 9 selected coherencies. These are plotted in

Figure 2 to characterize the model and enable comparison of measured

cumulative distributions of coherency with coherency calculated from the

model. For sample sizes between 2 and 100 the 95% confidence limits are

summarized in Figure 3.

1.0
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SQUARED COHERENCY
Figure 2. Cumulative frequency distributions for the calculated mean

squared coherency. To obtain the curves ;4otted, 500
estimates of coherency were made with a sample size of 100.

The true squared coherency is listed beside each curve.
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CONCLUSIONS

The algorithm meets the requirement of generating noise for

testing beamformers for closely spaced arrays. This enables testing and

comparison of beamformers in the laboratory for noise fields of defined

and reproducible properties.

It was verified, for three-element equispaced arrays, that

the algorithm is able to model noise fields with coherencies

corresponding to isotropic noise and to surface noise fields. However,

the algorithm does not generate noise for all arbitrary noise fields. An

expression that must be satisfied by the coherencies for a three-element

array was obtained.

The statistical properties of the synthesizer were confirmed

to be those for Gaussian noise and cumulative distributions of the

coherency were obtained.
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APPENDIX B

In this appendix the ondition on the noise "oherenies qj
for real '133 is derived for a three-element array. As previously the

hydrophone output X, is written

Xi - ail ZI + a12 Z2 + . . . . + ain Zn (Bi)

now qiJ XiXj* and ZjZj* - 1 i j (B2)

-0 i j

* so that qij E 1 aik ajk (B3)
k=1

solving (B3) for a ij we obtain:

21 a22 0 q 12 l -q2 12 0

f 3 1: a a33 q 3  q23 q13 q 12 (3 3 q )
q2. q2 (3 -3 2)

- 13 - q2

12

so that for a3 3 to be real

q2 + q2 + q2 - 0 (B4)
13 12 23

2q23 q1 3 q1 2



APPENDIX C

In this appendix some noise fields that ran be modelled by

the algorithm are determined. The investigation is limited to

three-element 'equispared' horizontal arrays. For an equispared array

q12 = q23 and (B4) becomes,

q2 3 - I - 2q2  (q 3 - 1) < 0

for a33 real. This equation may be written

(q 1 3 - 1)(q 13 + I - 2 q2 2) < 0

and since (q13 - 1) is always negative we require

2 q2 - q13 - 1<0 (C)

for real a33 .

Case I

For surface noise whose coherency ran be represented by Jo(x)

where x - kd, the left-hand side of (CI) becomes

2Jo 2 (x) - Jo(2x) - I (C2)

To evaluate this expression we have the addition theorems for Bessel

fune tion'j 6 :

Jo2 (x) + 2 1 J2 (x) 1 (C3)

k-i k

and Jo(2x) - JO2 (x) + 2 - (-)k Jk2 (X) (0A)
k-1



C-2

Substituting (C4) in (C2) and splitting the sum into even and odd parts

we obtain

j 2 (x)-2 E J2  (x)+2 z J2  Cx)- I
0 k-I 2k k-O 2k+i

J2 (x)-4 E j + (x)+2 Z J2(x) I
k-I k-i k

and by applying (C3)

k- 2k

This verifies that the left-hand side of (C2) is certainly less than or

equal to zero for all x. Thus the algorithm 'an find real a3 3 and

synthesize acoustic noise for surface noise of the form Jo(x) for all

hydrophone separations with a three-element equispaced array.

Case It

For surface generated noise fields the noise coherency can be

expressed by4 :

2! Jm(x)
i " xm

Go (c0)
W E (-I)k x2k n!

k-O 2 2k k! (n + k)!

To simplify substitution into (Cl), the test for real a33 , we note that

q J(x) - x2 MI Jm(x) + + (-l)k x2km! Jm(x)+ "'. (C6)

2m 22 (m + I)! xm  22k k! (m + k)!

q13 I - 4x2m + ............... + 4 (- 1)k x2k mt + *.. (C7)

22(m +1)! 2 2k k!(m + k)!



C-3

Now substituting in (Cl), grouping even and odd terms and using 9 to

denote the even terms, the left-hand side of (Cl) becomes

(2 Jm(x)) - /2x2 ml! Jm(x) 4x2 M!) ) +

xm 22(m + 1)1 xm 22(m + 1)1

t.. () x2  m! ( jm-x) - x + ...(C8)

2 29.,! (m+L)!22(t + 1) (m + I +

m J! J(kd)
2 m M

since < 1, the first and second terms in the above expression
(kd m --

are negative for all x. The third term is negative provided x < 6. This

implies that a 3 3 is known to be real under the following conditions,

1. the array consists of three equispaced sensors in a line;

2. the noise field is of the form (C5);

3. the largest hydrophone separations are < 0.95

wavelengths.

It was also found from numerical evaluation of Equation (Cl) that a3 3 is

real out to hydrophone separations of 1.5 wavelengths for m 1 1, 2, or 3

with surface noise fields of the form given by (C).

LI
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